Heidi Nykyri

Title
University Research Affiliate Professor
Email
Department
Physical Sciences Department
College
College of Arts & Sciences

Office Hours

T, Th 10:00-12:00 for EP410 and PS214 or by appointment, MW 10:00-11:00 for EP800, EP995, research group/research meetings MW 11:30-13:00 pm

Areas of Expertise

Space Physics, Space Plasma Physics, Magnetospheric Physics, Computational Physics, Single and Multi-spacecraft data-analysis techniques


Heidi Nykyri


Dr. Nykyri obtained her masters degree in theoretical physics in University of Helsinki, Finland in 1998 after which she continued to do a Ph.D in Physics in University of Alaska Fairbanks as well as another M.S degree in Computational Physics. In her Ph.D thesis she demonstrated for the first time how Kelvin-Helmholtz Instability can produce significant plasma transport due to magnetic reconnection. She obtained her doctorate in Physics in 2002 after which she worked as post doctoral research associate in Imperial College, London between 2002-2007. She is a co-investigator for the Flux Gate Magnetometer onboard 4 Cluster spacecraft and received in 2005 and 2015 European Space Agency award for Cluster Exploration of Geospace. In January 2007 she started as a assistant professor of Physics in Embry-Riddle and was tenured and promoted to associate professor in 2010, and to a full professor of physics in 2016. Dr. Nykyri has an externally funded research program in magnetospheric physics and supervises ERAU undergraduate, graduate and Ph.D student research. Her major research interests involve understanding the physical mechanisms that transport and heat plasma in solar wind -magnetosphere system. Dr. Nykyri was awarded the NSF career award in 2009 and ERAU researcher of the year award in 2010 and 2018.  She is a Co-director of the ERAU's LASMIR laboratory.  Between 2012-2018 she served as a Steering committee member of the National Science Foundation's GEM program as a research area coordinator for the Solar Wind Magnetosphere Interactions research area. Since Fall 2017 Dr. Nykyri is the Associate Director for Embry-Riddle's Centre of Space and Atmospheric Research (CSAR)  http://csar.erau.edu/ and Director for Space Weather Division. Nykyri also acted in academic service role, as an associate dean for research between 2018-2021. Since 2021 she serves as a Vice Chair for Magnetospheric Division for the Committee of Space Research, COSPAR.

  • Ph.D. - Doctor of Philosophy in Physics, University of Alaska Fairbanks
  • M.S. - Master of Science in Computational Physics, University of Alaska Fairbanks

  • EP 800: Dissertation

PS 150-Physics I for Engineers: Mechanics, Dynamics and Gravity

PS 219-Physics III for Engineering Physics: Electricity & Magnetism, circuits (including AC-circuits)

PS 214-Introduction to Space Weather

PS 250-Physics III for Engineers:  Electricity and Magnetism, circuits, and modern physics

PS 399-Special Topics in Physical Science: Introduction to Space Physics Research

EP 410-Space Physics I

EP 455-Quantum Mechanics

EP 411, 509-Space Physics II, Advanced Space Physics

EP 699-Special topics in Engineering Physics: Near Earth Space conditions during quiet conditions vs. extreme driving 

EP 700-Dissertation

EP 710-Space Plasma Physics

EP 800-Dissertation




Peer reviewed journal publications/book chapters (updated in August 2023), UG students are marked with *, M.S students with **, Ph.D students with *** and postdoctoral research associates with #. See also selected works at https://works.bepress.com/heidi-nykyri/



2023:


[79.] Yu-Lun Liou***, Katariina Nykyri, Shiva Kavosi#, and Xuanye Ma, Statistical Study of
the Energetic Electron Microinjections at the High-latitude Magnetosphere, Journal of
Geophysical Research, Space Physics, revision submitted, August, 2023

[78.] Archer, M. O., Southwood, D. J., Hartinger, M. D., Rastätter, L., & Nykyri, K. (2023). Magnetosonic ULF waves with anomalous plasma–magnetic field correlations: Standing waves and inhomogeneous plasmas. Geophysical Research Letters, 50, e2023GL104762. https://doi.org/10.1029/2023GL104762

[77.] West, M.J., Seaton, D.B., Wexler, D.B…..Nykyri, K., et al. Defining the Middle
Corona. Sol Phys 298, 78 (2023). https://doi.org/10.1007/s11207-023-02170-1

[76.] Katariina Nykyri, Xuanye Ma, Brandon Burkholder#, Yu-Lun Liou***, Roberto
Cuellar**, Shiva Kavosi# et al., Seven Sisters - A Mission to Study Fundamental Plasma,
Physical Processes in the Solar Wind and a Pathfinder to Advance Space Weather Prediction,
Front. Astron. Space Sci. 10:1179344, 4. doi: 10.3389/fspas.2023.1179344.

[75.] Laxman Adhikari, G. Zank, B.-B Wang, L.-L Zhao, D. Telloni, A. Pitna, M. Opher, B.
Shrestha, D. McComas, and Katariina Nykyri, Theory and Transport of Nearly Incompressible
Magnetohydrodynamic Turbulence: High Plasma Beta Regime, in press, June, 2023

[74.] K. Nykyri, Y. Liou***, X. Ma, S. Kavosi#, J. Egedal, S. A. Fuselier, R. G Gomez; Wave
analysis during energetic electron microinjections: A case study. Physics of Plasmas 1 July 2023;
30 (7): 072903. https://doi.org/10.1063/5.0142938

[73.] Kyoung-Joo Hwang, Chih-Ping Wang, Katariina Nykyri, Hiroshi Hasegawa, et al.,
Kelvin-Helmholtz Instability-driven magnetopause dynamics as turbulent pathway for the solar
wind magnetosphere coupling and the flank-central plasma sheet communication, 10, 1151869,
2023

[72.] Kavosi, S#., J. Raeder, J. R. Johnson, K. Nykyri, C. J. Farrugia, Seasonal and Diurnal
variations of Kelvin-Kelvin-Helmholtz Instability at the Earth’s Magnetopause, Nature Communications
14 (1), 2513, 2023


2022: 

[71.] Burkholder, B. L.#, Cuellar, R.**, Nykyri, K., Ma, X., Debchoudhury, S., A Regional Classification of Time Spectral Amplitudes in Total Electron Content: Southeastern United States During Solar Cycle 24, Front. Astron. Space Sci., 24 November 2022 Sec. Space Physics, https://doi.org/10.3389/fspas.2022.1040082

[70.] Rice, R. C.***, Nykyri, K., Ma, X., & Burkholder, B. L. # (2022). Characteristics of Kelvin–Helmholtz waves as observed by the MMS from September 2015 to March 2020. Journal of Geophysical Research: Space Physics, 127, e2021JA029685.
https://doi.org/10.1029/2021JA029685

[69.] Weygand, J. M., El-Alaoui, M., & Nykyri, H. K. (2022). The Source of Auroral Omegas. Journal of Geophysical Research: Space Physics, 127, e2021JA029908. https://doi.org/10.1029/2021JA029908


2021:

[68.]  Burkholder B., Nykyri K., Ma X., Soarthia K., Michael A., Otto A., Merkin S., The Structure of the Cusp Diamagnetic Cavity and Test Particle Energization in the GAMERA Global MHD Simulation, JGR-Space Physics, accepted, November 26th, 2021, 2021JA029738


[67.]  Elena A. Kronberg , J Gorman, Katariina Nykyri , A G Smirnov , Jesper W Gjerloev , Elena E. Grigorenko , L V Kozak , Xuanye Ma , K J Trattner and M Friel, Kelvin-Helmholtz Instability Associated with Reconnection and Ultra Low Frequency Waves at the Ground: A Case Study, Front. Phys. doi: 10.3389/fphy.2021.738988


[66.] Eun-Hwa Kim, Jay R Johnson, Katariina Nykyri, Coupling between Alfven wave and Kelvin-Helmholtz waves in the low latitude boundary layer, Journal: Frontiers in Astronomy and Space Sciences, section Space Physics, Front. Astron. Space Sci. doi: 10.3389/fspas.2021.785413


[65.]  Xuanye Ma, Peter Delamere, Katariina Nykyri, Brandon Burkholder#, Stefan Eriksson, Ion dynamics in the meso-scale 3-D Kelvin-Helmholtz instability: perspectives from test particle simulations, ournal: Frontiers in Astronomy and Space Sciences, section Space Physics, Front. Astron. Space Sci. doi: 10.3389/fspas.2021.758442


[64.] Michael, A. T., Sorathia, K. A., Merkin, V. G., Nykyri, K., Burkholder, B., Ma, X., et al. (2021). Modeling Kelvin-Helmholtz Instability at the High-Latitude Boundary Layer in a Global Magnetosphere Simulation. Geophysical Research Letters, 48, e2021GL094002. https://doi.org/10.1029/2021GL094002


[63.] Poh, G., Espley, J. R., Nykyri, K., Fowler, C. M., Ma, X., Xu, S., et al. (2021). On the Growth and Development of Non-linear Kelvin-Helmholtz Instability at Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 126, e2021JA029224. https://doi.org/10.1029/2021JA029224


[62.] Nykyri, K., Johnson, J., Kronberg, E., Turner, D., Wing, S., Cohen, I., et al. (2021). Magnetospheric multiscale observations of the source region of energetic electron microinjections along the duskside, high-latitude magnetopause boundary layer. Geophysical Research Letters, 48, e2021GL092466. https://doi.org/10.1029/2021GL092466


[61.] Nykyri, K., Ma, X., Burkholder#, B., Rice***, R., Johnson, J. R., Kim, E.-K., et al. (2021). MMS observations of the multiscale wave structures and parallel electron heating in the vicinity of the southern exterior cusp. Journal of Geophysical Research: Space Physics, 126, e2019JA027698. https://doi.org/10.1029/2019JA027698


[60.] Burkholder, B. L.#,  Nykyri, K., & Ma, X. (2021). Magnetospheric multiscale statistics of high energy electrons trapped in diamagnetic cavities. Journal of Geophysical Research: Space Physics, 126, e2020JA028341. https://doi.org/10.1029/2020JA028341


[59.] Nykyri, K., Ma, X. and Johnson, J. (2021). Cross-Scale Energy Transport in Space Plasmas. In Magnetospheres in the Solar System (eds R. Maggiolo, N. André, H. Hasegawa, D.T. Welling, Y. Zhang and L.J. Paxton). https://doi.org/10.1002/9781119815624.ch7


[58.] Delamere, P. A., Ng, C. S., Damiano, P. A., Neupane, B. R., Johnson, J. R., Burkholder, B.#, Ma, X., Nykyri, K., et al. (2021). Kelvin–Helmholtz-related turbulent heating at Saturn's magnetopause boundary. Journal of Geophysical Research: Space Physics, 126, e2020JA028479. https://doi.org/10.1029/2020JA028479

2020:

[ 57.] Ma, X., Nykyri, K., Dimmock, A., & Chu, C.# (2020). Statistical study of solar wind, magnetosheath, and magnetotail plasma and field properties: 12+ years of THEMIS observations and MHD simulations. Journal of Geophysical Research: Space Physics, 125, e2020JA028209. https://doi.org/10.1029/2020JA028209


[56.] Burkholder, B. L.#,  Nykyri, K., Ma, X., Rice, R.,*** Fuselier, S. A., & Trattner, K. J., et al. (2020). Magnetospheric Multiscale observation of an electron diffusion region at high latitudes. Geophysical Research Letters, 47, e2020GL087268. https://doi.org/10.1029/2020GL087268


[55.] Burkholder, B. L.#,  Nykyri, K., & Ma, X. (2020). Use of the L1 Constellation as a Multispacecraft Solar Wind Monitor. Journal of Geophysical Research: Space Physics, 125, e2020JA027978. https://doi.org/10.1029/2020JA027978


[54.] Nykyri, K. (2020). Structure and Dynamics of the Magnetosheath. In Dayside Magnetosphere Interactions (eds Q. Zong, P. Escoubet, D. Sibeck, G. Le and H. Zhang). https://doi.org/10.1002/9781119509592.ch7


2019:

[53.] Nykyri, K., Bengtson, M.**, Angelopoulos, V., Nishimura, Y., & Wing, S. (2019). Can Enhanced Flux Loading by High Speed Jets Lead to a Substorm? Multi-point Detection of the Christmas Day Substorm Onset at 08:17 UT, 2015. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2018JA026357


 [52.] Nykyri, K., Chu#, C., Ma, X., Fuselier, S. A., & Rice, R***. (2019). First MMS observation of energetic particles trapped in high-latitude magnetic field depressions. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2018JA026131


[51.] Fuselier, S. A., Trattner, K. J., Petrinec, S. M., Denton, M. H., Toledo-Redondo, S., André, M., ...  Nykyri, K., et al. (2019). Mass loading the Earth’s dayside magnetopause boundary layer and its effect on magnetic reconnection. Geophysical Research Letters, 46, 6204– 6213. https://doi.org/10.1029/2019GL082384


[ 50.] Sorathia, K., Merkin, V. G., Ukhorskiy, A. Y., Allen, R. C.,  Nykyri, K., & Wing, S. (2019). Solar wind ion entry into the magnetosphere during northward IMF. Journal of Geophysical Research: Space Physics, 124, 5461– 5481.https://doi.org/10.1029/2019JA026728


[ 49.] Sexton E.**,  Nykyri, K., Ma, X, (2019). Kp forecasting with a recurrent neural network, J. Space Weather Space Clim. 9 A19 (2019) DOI: 10.1051/swsc/2019020


[ 48.] Ma, X., Delamere, P. A.,  Nykyri, K., Burkholder, B., Neupane, B., & Rice, R. C ***. (2019). Comparison between fluid simulation with test particles and hybrid simulation for the Kelvin-Helmholtz instability. Journal of Geophysical Research: Space Physics, 124, 6654– 6668. https://doi.org/10.1029/2019JA026890


[47.] Ma, X., Delamere, P. A., Thomsen, M. F., Otto, A., Neupane, B., Burkholder, B. L., &  Nykyri, K. (2019). Flux tube entropy and specific entropy in Saturn’s magnetosphere. Journal of Geophysical Research: Space Physics, 124, 1593– 1611. https://doi.org/10.1029/2018JA026150

2018:

[ 46.] Masson, A.,  Nykyri, K. , Kelvin–Helmholtz Instability: Lessons Learned and Ways Forward. Space Sci Rev 214, 71 (2018) doi:10.1007/s11214-018-0505-6


2017:

 [45.] Henry. Z *,  Nykyri K., Moore T. W. ***, Dimmock A.P., Ma X.#, On the Dawn-Dusk Asymmetry of the Kelvin-Helmholtz Instability Between 2007-2013", J. Geophys. Res., doi:10.1002/2017JA024548, in press, 2017


[44.] Moore T.W***,  K. Nykyri, and A.P. Dimmock, Ion-Scale Wave Properties and Enhanced Ion Heating across the Low-Latitude Boundary Layer during Kelvin-Helmholtz Instability, J. Geophys. Res., 122, doi:10.1002/2017JA024591, 2017


[43.] Nykyri, K., X. Ma, A. Dimmock, C. Foullon, A. Otto, and A. Osmane, Influence of velocity fluctuations on the Kelvin-Helmholtz instability and its associated mass transport, J. Geophys. Res. Space Physics, 122, doi:10.1002/2017JA024374, 2017 (JGR Editor highlight)


[42.] Luo, H., E. A. Kronberg,  K. Nykyri, K. J. Trattner, P.W. Daly, G. X. Chen, A. M. Du, and Y. S. Ge, IMF dependence of energetic oxygen and hydrogen ion distributions in the near-Earth magnetosphere, J. Geophys. Res. Space Physics, 122, 5168–5180, 2017


[41.] Dimmock, A. P#., A. Osmane, T. I. Pulkkinen,  K. Nykyri, and E. Kilpua, Temperature variations in the dayside magnetosheath and their dependence on ion-scale magnetic structures: THEMIS statistics and measurements by MMS, J. Geophys. Res. Space Physics, 122, 6165–6184, doi:10.1002/2016JA023729, 2017


2016:

[40.] Moore, T. W***,  Nykyri, K, Dimmock#, A.P, Cross-scale energy transport in space plasmas, Nature Physics, Volume 12, Issue 12, pp. 1164-1169, 10.1038/nphys3869, 2016 (Nature Physics, Editor highlight followed by commentary article)


[39.] Dimmock, A. P#., Pulkkinen, T. I., Osmane, A., and Nykyri, K.: The dawn–dusk asymmetry of ion density in the dayside magnetosheath and its annual variability measured by THEMIS, Ann. Geophys., 34, 511-528, https://doi.org/10.5194/angeo-34-511-2016, 2016.


[38.] A. P. Dimmock#,  K. Nykyri, A. Osmane, H. Karimabadi, T. I. Pulkkinen, Dawn-dusk asymmetries of the Earth’s dayside magnetosheath in the MIPM reference frame, AGU Monograph of Magnetospheric Asymmetries, 2016


[37.] Nykyri, K. and A. Dimmock#, Statistical study of the ULF Pc4-Pc5 range in the vicinity of Earth’s magnetopause and correlation with the Low Latitude Boundary Layer thickness, Advances in space research, Volume 58, Issue 2, p.257-267, 10.1016/j.asr.2015.12.046, 2016


[36.] Dimmock A#.,  Nykyri K., Osmane A., and Pulkkinen T.I, Statistical mapping of ULF Pc3 velocity fluctuations in

the Earth’s dayside magnetosheath as a function of solar wind conditions, Advances in Space Research, Volume 58, Issue 2, p. 196-207, 2016


[35.] Adamson E.#,  Nykyri K., Otto A., The Kelvin-Helmholtz Instability Under Parker-Spiral Interplanetary Magnetic Field Conditions at the Magnetospheric Flanks, Advances in Space Research,Volume 58, Issue 2, p. 218-230, doi:10.1016/j.asr.2015.09.013., 2016


2015:

[34.] A Osmane, AP Dimmock#, R Naderpour, TI Pulkkinen,  K Nykyri, The impact of solar wind ULF Bz fluctuations on geomagnetic activity for viscous timescales during strongly northward and southward IMF, JGR-Space Physics, 10.1002/2015JA021505, 2015


[33.] Dimmock, A.#; Osmane A.; Pulkkinen A.;  Nykyri, K., A statistical study of the dawn-dusk asymmetry of ion temperature anisotropy and mirror mode occurrence in the terrestrial dayside magnetosheath using THEMIS data, Journal of Geophysical Research: Space Physics 120 (7), 5489-5503, doi:10.1002/2015JA021192, 2015


 [32.] Pulkkinen, T.; Dimmock, A.; Osmane A.;  Nykyri, K., Solar wind energy input to the magnetosheath and at the magnetopause, Geophysical Research Letters 42 (12), 4723-4730,

doi:10.1002/2015GL064226, 2015


[31.] Dimmock, A. P.#;  Nykyri, K.; H. Karimabadi, A. Osmane, Pulkkinen, T. I., A statistical study into the spatial distribution and asymmetry of dayside magnetosheath ion temperatures as a function of upstream solar wind conditions, Journal of Geophysical Research: Space Physics, J. Geophys. Res. Space Physics, 120, 2767–2782, doi: 10.1002/2014JA020734, 2015


2014:

[30.] Dimmock, A. P.#;  Nykyri, K.; Pulkkinen, T. I., A statistical study of magnetic field fluctuations in the dayside magnetosheath and their dependence on upstream solar wind conditions, Journal of Geophysical Research: Space Physics, Volume 119, Issue 8, pp. 6231-6248, 2014


[29.] Wing, S.; Johnson, J. R.; Chaston, C. C.; Echim, M.; Escoubet, C. P.; Lavraud, B.; Lemon, C.;  Nykyri, K.; Otto, A.; Raeder, J.;Wang, C.-P., Review of SolarWind Entry into and TransportWithin the Plasma Sheet, Space Science Reviews, Volume 184, Issue 1-4, pp. 33-86, 2014


[28.] Karimabadi, H.; Roytershteyn, V.; Vu, H. X.; Omelchenko, Y. A.; Scudder, J.; Daughton,W.; Dimmock, A.;  Nykyri, K.; Wan, M.; Sibeck, D.; Tatineni, M.; Majumdar, A.; Loring, B.; Geveci, B., The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas, Physics of Plasmas, Volume 21, Issue 6, id.062308, 2014

2013:


[27.] Dougal, E. R.**,  Nykyri, K., and Moore, T. W.***: Mapping of the quasi-periodic oscillations at the flank magnetopause into the ionosphere, Ann. Geophys., 31, 1993-2011, doi:10.5194/angeo-31-1993-2013, 2013.


[26.] Nykyri, K., and C. Foullon, First magnetic seismology of the CME reconnection outflow layer in the low corona with 2.5-D MHD simulations of the Kelvin-Helmholtz instability, Geophys. Res. Lett., 40, doi:10.1002/grl.50807., 2013


[25.] Nykyri, K., Impact of MHD shock physics on magnetosheath asymmetry and Kelvin-Helmholtz instability, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50499., 2013


[24.] Dimmock, A. P.#, and  Nykyri, K. , The statistical mapping of magnetosheath plasma properties based on THEMIS measurements in the magnetosheath interplanetary medium reference frame, J. Geophys. Res. Space Phys., 118, doi:10.1002/jgra.50465., 2013


[23.] Foullon, C; Verwichte, E;  Nykyri, K. Aschwanden, M. J.; Hannah, I. G. (2013) Kelvin-Helmholtz Instability of the CME Reconnection Outflow Layer in the Low Corona. The Astrophysical Journal, 767 (2), 170., 2013


[22.] Lavraud, B.; Larroque, E.; Budnik, E.; Génot, V.; Borovsky, J. E.; Dunlop, M. W.; Foullon, C.; Hasegawa, H.;

Jacquey, C.;  Nykyri, K.; Ruffenach, A.; Taylor, M. G. G. T.; et al., H. Asymmetry of magnetosheath flows and magnetopause shape during low Alfvén Mach number solar wind. JGR 118 (3), 1089-1100, 2013

2012:

[21.] Adamson, E., Otto, A., and  Nykyri, K., 3-D mesoscale MHD simulations of magnetospheric cusp-like configurations: cusp diamagnetic cavities and boundary structure, Ann. Geophys., 30, 325-341, doi:10.5194/angeo-30-325-2012, 2012


[20.] Turner, N. E., W. Murtagh, K. Guthrie,  Nykyri, K., W. A. Radasky, and E. Senkowicz (2012), Florida Energy Assurance Plan, Space Weather, 10, S08015, doi.10.1029/2012SW000834., 2012


[19.] Nykyri, K., Otto, A., Adamson E., Kronberg E., Daly P., On the Origin of High-Energy Particles in the Cusp Diamagnetic Cavity, Special Issue on Cusp Physics, JASTP, 2012, doi:10.1016/j.jastp.2011.08.012, 2012

2011:


[18.] Foullon, C.; Verwichte, E.; Nakariakov, V .M.;  Nykyri, K.; Farrugia, C.,Magnetic Kelvin-Helmholtz Instability at the Sun ,Astrophysical Journal Letters, APJ, 729 L8 doi:10.1088/2041-8205/729/1/L8, 2011


[17.] K. J. Trattner, S. M. Petrinec, S. A. Fuselier,  Nykyri, K., and E. Kronberg, Cluster observations of bow shock energetic ion transport through the magnetosheath into the cusp, JGR, VOL. 116, A09207, 12 PP., 2011, doi:10.1029/2011JA016617, 2011


[16.] Adamson, E.; Otto A.,  Nykyri, K., 3-D mesoscale MHD simulations of a cusp-like magnetic configuration: method and first results, Ann. Geophys., 29, 759-770, 2011, doi:10.5194/angeo-29-759-2011, 2011


[15.] Nykyri, K.; Otto, A.; Adamson, E.; Tjulin, A., On the origin of fluctuations in the cusp diamagnetic cavity, JGR,VOL. 116, A06208, 13 PP., 2011, doi:10.1029/2010JA015888, 2011


 [14.] Nykyri, K.; Otto, A.; Adamson, Dougal, E*; Mumme, J.*: Cluster observations of a cusp diamagnetic cavity: Structure, size, and dynamics, JGR, VOL. 116, A03228, 27 PP., 2011,

doi:10.1029/2010JA015897, 2011


2008: 

 [13.] Taylor, M, B. Lavraud, C. Escoubet, S. Milan, K. Nykyri, K., Dunlop,M.W., Davies, J.A., Friedel, R.H.W., Frey,H., Bogdanova,Y.V.,Åsnes,A., et al., The plasma sheet and boundary layers under northward, IMF: a multi-point and multi-instrument perspective, Advances in Space Research, doi:10.1016/j.asr.2007.10.013, 2008


2007:

[12.] Nykyri, K., Plasma – A View from Space, Invited Featured Review in Physics World, Volume 20, Issue 4, 2007


2006:

[11.] Nykyri, K., A. Otto, Lavraud B., Mouikis C., Kistler L., Balogh A., Reme H, “Cluster Observations of Reconnection due to the Kelvin-Helmholtz Instability at the Dawnside Magnetospheric Flank,” Annales Geophysicae (2006) 24: 2619– 2643, 2006


[10.] Nykyri, K., Grison B., Cargill P. J., Lavraud B., Lucek E., Dandouras I., Balogh A., Reme H., Cornilleau-Wehrlin N, “Origin of the Turbulent Spectra in the High-Altitude Cusp: Cluster Spacecraft Observations,” Annales Geophysicae (2006) 24: 1057 – 1075., 2006


2005:

[9.] Cargill P.J, Lavraud B., Owen C.J, Grison B., Dunlop M.W , Cornilleau-Wehrlin N., Escoubet C.P, Paschmann G.,Phan T.D, Rezeau L., Bogdanova Y., and  Nykyri, K., Cluster at the magnetospheric cusps, Space science series Book of ISSI, “Outer Magnetospheric Boundaries: Cluster results”, ISSI Space Science Series, Springer, Reprinted from Space Science Reviews, Volume 118, Nos. 1-4, 2005 2005, 2005


[8.] M.W.Dunlop, M.G.G.T.Taylor, J.A.Davies, C.J.Owen, F.Pitout, A.N.Fazakerley, Z.Pu, H.Laakso, Y.V.Bogdanova, Q.-G.Zong, C.Shen,  Nykyri, K., B.Lavraud, S.E.Milan, T.D.Phan, H.Rème et al., Coordinated Cluster/Double Star observations of dayside reconnection signatures, Annales Geophysicae VOL 23, 2867, 2005


2004:

[7.] Nykyri, K. and A. Otto, “Influence of the Hall Term on KH Instability and Reconnection inside KH vortices,” Annales Geophysicae (2004) 22: 935 - 949, 2004


[6.] Nykyri, K. Cargill P. J., Lucek E.A., Horbury T. S., Lavraud B., Balogh A., Dunlop M.W., Bogdanova Y., Fazarkerley A., Dandouras I. and Reme H, “Cluster Observations of Magnetic Field Fluctuations in the High-Altitude Cusp,” Annales Geophysicae (2004) 22: 2413 - 2429, 2004


[5.] Cargill P. J., Dunlop M.W, Lavraud B., Elphic R.C., Holland D. L.,  Nykyri, K., Balogh A.., Dandouras I. and Reme H., CLUSTER encounters with the high altitude cusp: Boundary structure and magnetic field depletions, Annales Geophysicae, VOL.22,1739, 2004


2003:

[4.] Nykyri, K. .,Cargill P. J., Lucek E. A., Horbury T. S., Balogh A., Lavraud B., Dandouras I., Reme H., “Ion Cyclotron Waves in the High-Altitude cusp: CLUSTER Observations at Varying Spacecraft Separations,” Geophysical Research Letters, Volume 30, Issue 24, pp. SSC 12-1, CiteID 2263, DOI 10.1029/2003GL018594, 2003


2002:

[3.] Nykyri, K., Otto A., Buchner J., Nikutowski B., BaumjohannW., Kistler L. M. And Mouikis C, “Equator-S Observations of Boundary Signatures: FTE’s or Kelvin- Helmholtz Waves,” Geophysical Monograph 133, Earth’s Low-Latitude Boundary Layer, 202, 2002


[2.] Otto, A. and Nykyri, K. “Kelvin-Helmholtz Instability and Magnetic Reconnection: Mass Transport at the LLBL”, Geophysical Monograph 133, Earth’ s Low-Latitude Boundary Layer, 53 , 2002.


2001:


[1.] Nykyri, K. and Otto, A. “Plasma Transport at the Magnetospheric Boundary due to Reconnection in Kelvin-Helmholtz vortices,” Geophysical Research Letters, Volume 28, Issue 18, p. 3565-3568, 2001 (GRL Editor highlight).




Other Publications:

[1.] Steven Petrinec and  Katariina Nykyri, The Magnetosheath Whitepaper, 2012,

http://aten.igpp.ucla.edu/gemwiki/images/d/d7/GEM_Msheath_FG_white_paper_V1.pdf


[2.] Lotko, William, Jeffrey Hughes, Michael W. Liemohn and  Katariina Nykyri , White paper for NSF’s GEM

program: The Geospace Environment Modeling Program Need, Goals, Accomplishments, Implementation, 2013,

http://spc.igpp.ucla.edu/gem/pdf/GEMWhitePaper-2013.07.01.pdf


[3.] Comitteee member and co-author in the Decadal Survey Midterm Assesment report.

National Academies of Sciences, Engineering, and Medicine. 2020. Progress Toward Implementation of the 2013

Decadal Survey for Solar and Space Physics: A Midterm Assessment. Washington, DC: The National Academies

Press. https://doi.org/10.17226/25668. https://www.nap.edu/catalog/25668/progress-toward-implementation-of-the-2013-decadal-survey-for-solar-and-space-physics


[4.] Nykyri, K., Ma, X., Improved Plasma Science Through Multi-Point, Multi-Scale Measurements in the Solar Wind,

A Whitepaper submitted to the Heliophysics 2050 workshop as a preparation for the next decadal survey.

https://www.hou.usra.edu/meetings/helio2050/pdf/4008.pdf


Theses

 [1.] M.Sci Thesis in Theoretical physics, University of Helsinki, Finland 1998: Magnetic field model for planet Mercury

(Modification of Tsyganenko magnetic field model for Mercury and fitting of the free parameters in the model with

Mariner 10 data)


[2.] Ph.D thesis in Physics, 2002, University of Alaska, Fairbanks, 2002: On the Influence of Kelvin-Helmholtz

Instability (KHI) on the Plasma Transport at the Magnetospheric Boundary (I developed 2-D MHD and Hall-MHD simulations of the KHI, quantified the plasma transport produced by Kelvin-Helmholtz waves and compared these with

Equator-S and Cluster spacecraft data and ionospheric observations)


Published American Geophysical Union Conference abstracts (including co-authored) 

  1. [FM-20-SH003-0018] Unraveling the Multi-Scale Solar Wind Structure Between Lagrange 1-point, Lunar Orbit and Earth’s Bow Shock: Better Space Weather Prediction Through Information Theory
  2. [FM-20-SM006-0006] Coupling between Alfven and Kelvin-Helmholtz waves at the low latitude boundary layer
  3. [FM-20-SM041-0016] MMS Observations of Cross Scale Heating within the Kelvin-Helmholtz Instability
  4. [FM-20-SM010-07] Energetic electron injections observed by the MMS at dusk sector dayside magnetosphere associated with field depressions of compressional ULF waves: identifying the source
  5. [FM-20-SM017-0003] Identifying Boundary Layer Signatures of the Kelvin-Helmholtz Instability Using Hall-MHD Simulations and Virtual Spacecraft
  6. [FM-20-SM038-05] - Ion behaviors in the meso-scale 3-D Kelvin–Helmholtz instability
  7. [FM-20-SM052-0003] - Global MHD Simulations with Test Particles to Understand Particle Trapping and Heating in a Diamagnetic Cavity
  8. [FM-20-SM056-0001] - Electron energization and the Kelvin-Helmholtz instability
  9. [FM-19-SM51D-3225] Statistics of the Magnetospheric Multi-Scale Observations of Energetic Particle Properties and their Relation to Diamagnetic Cavities
  10. [FM-19-SM34A-05] MMS Observations of Multi-Scale Wave Structures with Energetic Electrons at the High-Latitude Dayside Boundary Layer In the Vicinity of the Southern Cusp
  11. [FM-19-SM33E-3266] Radial transport in Saturn's Magnetosphere: view from the entropy concept
  12. [FM-19-SM33E-3265]Turbulent plasma heating associated with the Kelvin-Helmholtz instability
  13. [FM-19--SM32A-07] Coupling between Kinetic Alfven Waves and Kelvin-Helmholtz Waves at the Magnetopause
  14. [FM-19-SM21C-3178] MMS Observations of Plasma Heating and High Frequency Waves in Kelvin-Helmholtz Vortices
  15. [FM-19-SM13E-3359] Possible Substorm Triggering by Magnetosheath Jets During Northward and Radial IMF: 14 Spacecraft Observations, MHD Simulations and Ground Based and Auroral Signatures
  16. [FM18-SM11C-2794] Quantitative Comparison of Transport Rates between Fluid Simulations (with Test Particles) and Hybrid Simulations of the Kelvin-Helmholtz Instability
  17. [FM-18 SM13B-2835] Resonant mode conversion of Alfven waves in the low-latitude boundary layer structured by Kelvin-Helmholtz instability
  18. [FM-18 SM32A-09] Magnetospheric Multi-Scale Observations of High-Energy Particles in a Magnetic Bottle at High-Latitude Magnetopause
  19. [FM-SM13B-2836] Properties of Fluid-scale Kelvin-Helmholtz Waves and High Frequency Waves within KH Vortices as Observed by MMS
  20. [FM-18-SM52A-02] Transport properties as a function of plasma beta in the giant planet magnetospheres
  21. [FM-18-SM11D-2817] Statistical Correlation Study Between Magnetosheath and Magnetospheric Plasma Properties Using 9 Years of THEMIS Data
  22. [FM17-P23D-2787] Effect of Chemistry on Electrodynamics in the Martian Dynamo Region using Multifluid MHD
  23. [FM17-SM11B-2307] A Global Perspective of Substorm Onset
  24. [FM17-SM24A-04] Comparison of Kelvin–Helmholtz instability in the two- and three-dimensional configurations
  25. [FM17-SM44B-02] Cross-scale transport processes in the three-dimensional Kelvin-Helmholtz instability
  26. [FM17-SM51A-2412] Plasma sheet density dependence on Interplanetary Magnetic Field and Solar Wind properties: statistical study using 9+ year of THEMIS data
  27. [FM17-SM13D-2412] Statistical Study between Solar Wind, Magnetosheath and Plasma Sheet Fluctuation Properties and Correlation with Magnetotail Bursty Bulk Flows
  28. [FM17-SM13C-2393] On the Dawn-Dusk Asymmetry of the Kelvi-Helmholtz Instability From 2007-2013
  29. [FM17-SM11A-2282] A unique constellation of spacecraft constellations to study Kelvin-Helmholtz Instability in 2017-2020: MMS, Cluster and Themis
  30. [FM17-SM11A-2283] Current structures and high frequency waves inside Kelvin-Helmholtz vortices: MMS observations
  31. [FM17-SM11A-2284] Ion-Scale Wave Properties and Enhanced Ion Heating across the Magnetopause during Kelvin-Helmholtz Instability
  32. [FM16-SM44A-03] Cluster and THEMIS observations of the magnetosphere dayside boundaries in preparation for the SMILE mission
  33. [FM-16-SM23B-2483] On the Magnetospheric Heating Problem
  34. [FM-16-SH12A-06]Statistical Study of Kinetic Scale Wave Properties inside Fluid-Scale Kelvin-Helmholtz Waves
  35. [FM15-SM13D-2535] On the impact of fluctuations on the magnetotail reconnection.
  36. [FM15-SM13C-2524] Identifying Kinetic Plasma Wave Modes Observed in the Acceleration Regions in the Low-Latitude Boundary Layer,
  37. [FM-15-SM13C-2500] ) On the plausible observational features of the nonlinear interaction between the Kelvin–Helmholtz instability and magnetic reconnection
  38. [FM-15-SM13C-2528] Yearly variations of magnetosheath ion density dawn-dusk asymmetry and its impact on viscous plasma transport
  39. [FM14-SM52A-03] The Missing Link Coupling the Foreshock to the Magnetosphere: Impact of the Magnetosheath Velocity Fluctuations on the Growth of the Kelvin-Helmholtz Instability
  40. [FM14-SM41A-4219] Identification of higher frequency plasma waves inside a Kelvin-Helmholtz Vortex
  41. [FM14-SM51H-07] Magnetosheath Effects in Solar Wind-Magnetosphere Coupling Processes
  42. [FM12-SM31B-4193] System Science Tool for the Statistical mapping of the Solar Wind-Magnetosheath-Magnetosphere System
  43. [FM12-SM13B-2343] Multi-mission conjunction to probe the spatial and temporal aspects of the magnetopause boundary layer formation under northward IMF
  44. [FM12-SM21A-2236] A statistical study of the relationship between magnetosheath and solar wind plasma properties based on OMNI and THEMIS datasets
  45. [FM12-SM21B-2267] The Interaction of Kelvin-Helmholtz Modes and Magnetic Reconnection for Southward IMF
  46. [FM12-SM22A-03] Impact of Magnetosheath Properties on the Physical Processes at the Magnetopause Boundary and Resulting Plasma Sheet Asymmetries (Invited)
  47. [FM12-SM31A-2273] Identifying Signatures of Plasma Heating Events in Low-Latitude Boundary Layer Associated with Kelvin-Helmholtz Instability and Magnetic Reconnection
  48. [FM11-SM22B-05] On the Interaction of Kelvin-helmholtz Modes and Magnetic Reconnection for Large Magnetic Shear
  49. [FM10-SM51B-1783] Statistical Study of Magnetosheath Temperatures
  50. [FM10-SM11A-1694] Particle acceleration in the diamagnetic cusp
  51. [FM10-SM51B-1796] 2-D and 3-D Hall MHD Reconnection
  52. [FM09-SM12A-05] Kelvin-Helmholtz Modes and Plasma Entry into the Earth's Plasma Sheet for Northward IMF
  53. [FM09-SM31C-03] On The Origin of High-Energy Electrons in Cusp Diamagnetic Cavities
  54. [FM09-SM33A-1546] Particle Energization in Cusp-Like Diamagnetic Cavities
  55. [FM09-SM34A-04] Spatial and Temporal aspects of magnetopause boundary layer formation under northward IMF
  56. [FM09-SM31C-04] 3D MHD Simulations of Reconnection in the Magnetospheric Cusps
  57. [FM08-SM54A-06] Particle Acceleration in Cusp-like Magnetic Trapping Regions
  58. [FM08-SM23A-1684] 2-D MHD and Hall-MHD local simulations of the Kelvin-Helmholtz Instability at the Ionopause of Mars
  59. [FM08-SM51B-1636] Three Dimensional Simulations of Magnetospheric Cusps - Results of MHD Parameter Variations
  60. [FM08-SM51B-1637] Simultaneous Measurements of the High-Energy Particle Properties at a Cusp Diamagnetic Cavity and Surrounding Magnetosheath: Evidence for Local Acceleration Mechanism?
  61. [JA08-SM51A-03] Cluster observations of a large cusp diamagnetic cavity and comparison with 3-D high resolution MHD simulations
  62. [JA08-SM54A-08] Cusp Diamagnetic Cavities and Particle Dynamics
  63. [JA08-SM53A-05] Big, Bigger and Biggest: A multi-multi-spacecraft case study of waves in and around the magnetopause boundary layer
  64. [FM07-SM22B-02] Anatomy of Diamagnetic Cusp Cavities - MHD Modeling
  65. [FM07-SM31B-0457] Anatomy of Diamagnetic Cusp Cavities - Cluster observations
  66. [FM07-SM31B-0458] Particle Acceleration in Cusp Diamagnetic Cavities
  67. [FM06-SM11D-02] Analysis of Magnetic Cavities in the Vicinity of a Cusp-like Magnetic Configuration
  68. [WP06-SM12A-01] Reconnection signatures in the high and low latitude dayside magnetopause observed by Cluster and Double Star
  69. [WP06-SM22A-06] Cold Dense Plasma Sheet Formation: A Multi-Spacecraft View Point
  70. [FM05-SM23C-04] High and low latitude reconnection signatures in the dayside magnetopause and cusp observed by Cluster-Double Star: six-point measurements
  71. [FM05-SM24A-05] Sources of Cold Dense Plasma Sheet:A Multi-Satellite, Multipoint Case Study
  72. [FM05-SM43D-08] Turbulence in the high-altitude cusp: Cluster FGM and STAFF observations
  73. [FM05-SM52A-08] Plasma Dynamics in the Vicinity of a Cusp-Like Magnetic Configuration
  74. [FM04-SM11C-03] Cluster observations of the boundary waves and magnetic reconnection at the dawnside magnetospheric flank
  75. [FM04-SM13B-1211] Magnetic Reconnection and Kelvin-Helmholtz Modes at the Flanks of the Magnetosphere
  76. [FM03-SM52B-0595] Ion cyclotron waves in the high altitude cusp: CLUSTER observations at varying spacecraft separations
  77. [FM01-SM22A-0809] Macro-Scale Effects of Hall Physics in Magnetic Reconnection
  78. [FM01-SM41B-0811] Magnetic Reconnection in Kelvin-Helmholtz Vortices: Hall Dynamics
  79. [FM00-SM61B-02] Simulation of Magnetic Reconnection in Kelvin-Helmholtz Vortices and Comparison with Equator-S Observations
  80. [FM99-SM51A-08] Magnetospheric Plasma Entry Through Reconnection in Kelvin-Helmholtz Vortices During Northward IMF



Posts Held:

May 2018- May 2021

Associate Dean of Research and Graduate Education

2017-present: 

Associate Director for Center of Space and Atmospheric Research (CSAR), ERAU

Director of Space Weather, ERAU

2016-present:

Tenured Professor of Physics

Physical Sciences Department, ERAU

2010-2016:

Tenured Associate Professor of Physics,

Physical Sciences Department, ERAU

2013-2014:

Visiting Professor

Aalto University, School of Electrical Engineering, Helsinki, Finland

2007-2010

Assistant Professor of Physics,

Physical Sciences Department, ERAU

2002-2007

Postdoctoral Research Associate and Academic Tutor,

Physics Department, Imperial College London, UK

1999-2002:

Research Assistant, The Geophysical Institute,

University of Alaska Fairbanks, USA

2001:

Visiting Scientist

Max-Planck Institute for Solar System Research,

Katlenburg-Lindau, Germany

1998-1999

Teaching Assistant, Physics Department,

University of Alaska Fairbanks, USA

Summer 1998:

Intern, Solar System Division, ESTEC,

European Space Agency, The Netherlands


Appointments/Career breaks

2015-present

Interdisciplinary Science team member for NASA's Magnetosphere MultiScale (MMS) mission

2017-

Associate director of CSAR, ERAU

2015-2017

Space Physics Program Coordinator, ERAU

2014-present

Founding Member of Center of Space and Atmospheric, Research, CSAR, ERAU

2013-present

Co-Director for LAboratory of Solar-Magnetosphere-Ionosphere Research (LASMIR), ERAU

Dec 2013-present

Visiting Professor, School of Electrical Engineering, Aalto University, Finland

Sep 2013-Nov 2013

6 week Maternity leave

2012-present

Steering Committee Member for National Science Foundation's (NSF) Geospace Environment Modeling (GEM) -program, Dayside Research Area Coordinator 

2010-2014

GEM Magnetosheath Focus Group Leader

Oct 2010-Dec 2010

6 week Maternity leave

2007-present

Co-Investigator for Cluster Flux Gate Magnetometer (FGM)

2001

Visiting scientist, Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany



American Geophysical Union, 1999-present


2018   Researcher of the year award, ERAU

2015   Outstanding Contribution to the Cluster and Double Star missions -Award, European Space Agency 

2010    Researcher of the year award, ERAU

2009    National Science Foundation CAREER Award

2005    Outstanding Contribution to Cluster Exploration of the Geospace-Award, European Space Agency

2001    American Geophysical Union (AGU) Outstanding Student paper Award, AGU Fall meeting, San Francisco, 2000

1998    Graduation with 'Excellent Knowledge'  In Theoretical Physics, University of Helsinki of Finland

1993    The City of Mikkeli Yhteiskoulu High School Medal for Success in Academics (grade Laudatur in matriculation exam and Sports at National Level (2nd place in Finnish Championships in Triathlon, 1992)