Supporting information for Figure 3(P. A. Inchin, Pavel Inchin, J. Aguilar Guerrero, Jaime Aguilar Guerrero, J B. Snively, Jonathan B. Snively, Y. Kaneko)Simulation of Infrasonic Acoustic Wave Imprints on Airglow Layers During the 2016 m7.8 Kaikoura Earthquake(2022)
Synthetic images(P. A. Inchin, Pavel Inchin, J. Aguilar Guerrero, Jaime Aguilar Guerrero, J B. Snively, Jonathan B. Snively, Y. Kaneko)Simulation of Infrasonic Acoustic Wave Imprints on Airglow Layers During the 2016 m7.8 Kaikoura Earthquake(2022)
Table of maximum peak-to-peak perturbations(P. A. Inchin, Pavel Inchin, J. Aguilar Guerrero, Jaime Aguilar Guerrero, J B. Snively, Jonathan B. Snively, Y. Kaneko)Simulation of Infrasonic Acoustic Wave Imprints on Airglow Layers During the 2016 m7.8 Kaikoura Earthquake(2022)
Temporal evolution of rupture in kinematic slip model #3(P. A. Inchin, Pavel Inchin, J. Aguilar Guerrero, Jaime Aguilar Guerrero, J B. Snively, Jonathan B. Snively, Y. Kaneko)Simulation of Infrasonic Acoustic Wave Imprints on Airglow Layers During the 2016 m7.8 Kaikoura Earthquake(2022)
Simulation results with kinematic slip model #3(P. A. Inchin, Pavel Inchin, J. Aguilar Guerrero, Jaime Aguilar Guerrero, J B. Snively, Jonathan B. Snively, Y. Kaneko)Simulation of Infrasonic Acoustic Wave Imprints on Airglow Layers During the 2016 m7.8 Kaikoura Earthquake(2022)
Simulation results with kinematic slip model #4(P. A. Inchin, Pavel Inchin, J. Aguilar Guerrero, Jaime Aguilar Guerrero, J B. Snively, Jonathan B. Snively, Y. Kaneko)Simulation of Infrasonic Acoustic Wave Imprints on Airglow Layers During the 2016 m7.8 Kaikoura Earthquake(2022)
Simulation results with kinematic slip model #1(P. A. Inchin, Pavel Inchin, J. Aguilar Guerrero, Jaime Aguilar Guerrero, J B. Snively, Jonathan B. Snively, Y. Kaneko)Simulation of Infrasonic Acoustic Wave Imprints on Airglow Layers During the 2016 m7.8 Kaikoura Earthquake(2022)
Simulation results with kinematic slip model #2(P. A. Inchin, Pavel Inchin, J. Aguilar Guerrero, Jaime Aguilar Guerrero, J B. Snively, Jonathan B. Snively, Y. Kaneko)Simulation of Infrasonic Acoustic Wave Imprints on Airglow Layers During the 2016 m7.8 Kaikoura Earthquake(2022)
Table: Spatial Extents of the Numerical Domains(P. A. Inchin, Pavel Inchin, C. J. Heale, Christopher J. Heale, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren)Numerical Modeling of Tsunami-generated Acoustic-gravity Waves in Mesopause Airglow(2022)
Figure 3,a-c, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Model 6, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Model 4, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 7,a,e, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 7,j, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 7,k, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 7,c,g, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 3,g-i, animation, data(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 3,j-l, animation, data(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 3,d-f, animation, data(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 1,b, data(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
The details of forward seismic wave simulation method(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 4, animation, data(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Radio occultation profile(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Model 7, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 7,l, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 7,i, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 7,d,h, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 7,b,f, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
Figure 5,a-c, animation(P. A. Inchin, Pavel Inchin, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren, Y. Kaneko, A. Komjathy)Inferring the Evolution of a Large Earthquake from its Acoustic Impacts on the Ionosphere(2021)
1. Figure 1, Animation 1(P. A. Inchin, Pavel Inchin, C. J. Heale, Christopher J. Heale, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren)The dynamics of nonlinear atmospheric acoustic-gravity waves generated by tsunamis over realistic bathymetry(2020)
5. Figure 1, Animation(P. A. Inchin, Pavel Inchin, C. J. Heale, Christopher J. Heale, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren)The dynamics of nonlinear atmospheric acoustic-gravity waves generated by tsunamis over realistic bathymetry(2020)
4. Data 1, three-dimensional volume data(P. A. Inchin, Pavel Inchin, C. J. Heale, Christopher J. Heale, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren)The dynamics of nonlinear atmospheric acoustic-gravity waves generated by tsunamis over realistic bathymetry(2020)
3. Figure 1, Animation 3(P. A. Inchin, Pavel Inchin, C. J. Heale, Christopher J. Heale, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren)The dynamics of nonlinear atmospheric acoustic-gravity waves generated by tsunamis over realistic bathymetry(2020)
2. Figure 1, Animation 2(P. A. Inchin, Pavel Inchin, C. J. Heale, Christopher J. Heale, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren)The dynamics of nonlinear atmospheric acoustic-gravity waves generated by tsunamis over realistic bathymetry(2020)
6. Data 2, meridional slice data(P. A. Inchin, Pavel Inchin, C. J. Heale, Christopher J. Heale, J. B. Snively, Jonathan B. Snively, M. D. Zettergren, Matthew D. Zettergren)The dynamics of nonlinear atmospheric acoustic-gravity waves generated by tsunamis over realistic bathymetry(2020)
Figure 4, animation(Pavel Inchin, Jonathan B. Snively, Amy Williamson, Diego Melgar, Jamie Aguilar Guerrero, Jaime Aguilar Guerrero, Matthew D. Zettergren)Mesopause Airglow Disturbances Driven by Nonlinear Infrasonic Acoustic Waves Generated by Large Earthquakes(2020)
Figure 2, animation(Pavel Inchin, Jonathan B. Snively, Amy Williamson, Diego Melgar, Jamie Aguilar Guerrero, Jaime Aguilar Guerrero, Matthew D. Zettergren)Mesopause Airglow Disturbances Driven by Nonlinear Infrasonic Acoustic Waves Generated by Large Earthquakes(2020)
Figure 4, data(Pavel Inchin, Jonathan B. Snively, Amy Williamson, Diego Melgar, Jamie Aguilar Guerrero, Matthew D. Zettergren)Mesopause Airglow Disturbances Driven by Nonlinear Infrasonic Acoustic Waves Generated by Large Earthquakes(2020)
Figure 2, data(Pavel Inchin, Jonathan B. Snively, Amy Williamson, Diego Melgar, Jamie Aguilar Guerrero, Jaime Aguilar Guerrero, Matthew D. Zettergren)Mesopause Airglow Disturbances Driven by Nonlinear Infrasonic Acoustic Waves Generated by Large Earthquakes(2020)
Figure 10, animation(Pavel Inchin, Jonathan B. Snively, Matthew D. Zettergren, A. Komjathy, O. P. Verkhoglyadova, S. Tulasi Ram, S Tulasi Ram)Modeling of Ionospheric Responses to Atmospheric Acoustic and Gravity Waves Driven by the 2015 Nepal Mw7.8 Gorkha Earthquake(2019)
Figure 13, data(Pavel Inchin, J. B. Snively, Jonathan B. Snively, Matthew D. Zettergren, A. Komjathy, O. P. Verkhoglyadova, S. Tulasi Ram, S Tulasi Ram)Modeling of Ionospheric Responses to Atmospheric Acoustic and Gravity Waves Driven by the 2015 Nepal Mw7.8 Gorkha Earthquake(2019)
Figure 2(Christopher J. Heale, K. Bossert, Katrina Bossert, S. L. Vadas, L. Hoffmann, Lars Hoffmann, A. Dӧrnbrack, G. Stober, Jonathan B. Snively, C. Jacobi)Secondary Gravity Waves Generated by Breaking Mountain Waves over Europe(2019)
Figure 1(Christopher J. Heale, K. Bossert, Katrina Bossert, S. L. Vadas, L. Hoffmann, Lars Hoffmann, A. Dӧrnbrack, G. Stober, Jonathan B. Snively, C. Jacobi)Secondary Gravity Waves Generated by Breaking Mountain Waves over Europe(2019)
Figure 10, data(Pavel Inchin, Jonathan B. Snively, Matthew D. Zettergren, A. Komjathy, O. P. Verkhoglyadova, S. Tulasi Ram, S Tulasi Ram)Modeling of Ionospheric Responses to Atmospheric Acoustic and Gravity Waves Driven by the 2015 Nepal Mw7.8 Gorkha Earthquake(2019)
Figure 9, data(Pavel Inchin, Jonathan B. Snively, Matthew D. Zettergren, A. Komjathy, O. P. Verkhoglyadova, S. Tulasi Ram, S Tulasi Ram)Modeling of Ionospheric Responses to Atmospheric Acoustic and Gravity Waves Driven by the 2015 Nepal Mw7.8 Gorkha Earthquake(2019)
Figure 9, animation(Pavel Inchin, Jonathan B. Snively, Matthew D. Zettergren, A. Komjathy, O. P. Verkhoglyadova, S. Tulasi Ram, S Tulasi Ram)Modeling of Ionospheric Responses to Atmospheric Acoustic and Gravity Waves Driven by the 2015 Nepal Mw7.8 Gorkha Earthquake(2019)
Figure 12, data(Pavel Inchin, Jonathan B. Snively, Matthew D. Zettergren, A. Komjathy, O. P. Verkhoglyadova, S. Tulasi Ram, S Tulasi Ram)Modeling of Ionospheric Responses to Atmospheric Acoustic and Gravity Waves Driven by the 2015 Nepal Mw7.8 Gorkha Earthquake(2019)
Figure 11, data(Pavel Inchin, Jonathan B. Snively, Matthew D. Zettergren, A. Komjathy, O. P. Verkhoglyadova, S. Tulasi Ram, S Tulasi Ram)Modeling of Ionospheric Responses to Atmospheric Acoustic and Gravity Waves Driven by the 2015 Nepal Mw7.8 Gorkha Earthquake(2019)
Figure 13, animation(Pavel Inchin, Jonathan B. Snively, Matthew D. Zettergren, A. Komjathy, O. P. Verkhoglyadova, S. Tulasi Ram, S Tulasi Ram)Modeling of Ionospheric Responses to Atmospheric Acoustic and Gravity Waves Driven by the 2015 Nepal Mw7.8 Gorkha Earthquake(2019)
Momentum Flux Spectra of a Mountain Wave Event Over New Zealand(Katrina Bossert, David C. Fritts, Christopher J. Heale, Stephen D. Eckermann, John M. C. Plane, Jonathan B. Snively, Bifford P. Williams, Iain M. Reid, Damian J. Murphy, Andrew J. Spargo, Andrew D. MacKinnon)Publications(2018)