Keshav Acharya

Title
Associate Professor
Email
Department
Mathematics Department
College
College of Arts & Sciences
Keshav Acharya


  • Ph.D. - Doctor of Philosophy in Mathematics, University of Oklahoma Norman Campus

  • MA 243: Calculus & Analytical Geom III
  • MA 490: Capstone Project
  • MA 432: Linear Algebra
  • MA 412: Probability and Statistics

   

  1. K. R. Acharya, M. McBride, " Compact linear relations and their spectral properties". Electronic Journal of Mathematical Analysis and Applications. Vol 11(1) Jan. 2023 pp 116-126.
  2. K.R. Acharya, M. McBride, "Half line Titchmarsh–Weyl m functions of vector-valued discrete Schrödinger operators". Annals of  Functional Analysis. 12, 53 (2021). https://doi.org/10.1007/s43034-021-00140
  3. K. R. Acharya, A. Ludu "Some theory and applications of 2N-dimensional canonical systems: periodic and nonperiodic." Journal of Physics. A 54 (2021), no. 8, Paper No. 085202, 16 pp. 34L40 (34C25)

  4. K. R. Acharya, M. McBride, "Action of complex symplectic matrices on the Siegel upper half-space", Linear Algebra and its Applications, Volume 563, 2019, Pages 47-62, https://doi.org/10.1016/j.laa.2018.10.021.
  5. K. R. Acharya, " Titchmarsh-Weyl Theory for vector-valued discrete Schrödinger operators",  Analysis and Mathematical Physics. (2018). PP 1-17, https://doi.org/10.1007/s13324-018-0277
  6. K. R. Acharya, " A note on vector-valued discrete Schrodinger operators", Nepali Mathematical Science Report, Vol 34 (2016), no 1&2, 1-10. 
  7. K. R. Acharya, " Remling's theorem on canonical systems", Journal of Mathematical Physics57, 023505 (2016); http://dx.doi.org/10.1063/1.4940048
  8. L. Lowder · A. Khalid · D.R. Ferreira · J.L. Bohannon · B. Stutzmann · M.M. Atiqullah · R. Singh · T. Yee · K. R. Acharya ·C.A. Chin · M.A. Karim · R.S. Keyser · D. Colebeck, “Student and faculty perceptions of attendance policies at a polytechnic university”, ASEE’s 122nd Annual Conference & Exposition held in Seattle, Washington on June 14-17, 2015
  9. K. R. Acharya, “Titchmarsh-Weyl theory for canonical systems”, Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 248, pp. 1–13.
  10. K. R. Acharya, “An Alternate Proof of the De Branges Theorem on Canonical Systems,” ISRN Mathematical Analysis, vol. 2014, pp. 1–7, 2014
  11. K. R. Acharya, “Self-Adjoint Extension and Spectral Theory of a Linear Relation in a Hilbert Space,”ISRN Mathematical Analysis, vol. 2014, Article ID 471640, 5 pages, 2014. doi:10.1155/2014/471640



2021- present, Associate Professor, Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL.

2015-2021,  Assistant Professor, Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL.

2013-2015,  Lecturer, Department of Mathematics, Kennesaw State University-Marietta Campus,  Marietta, GA.

2007-2013,  Teaching Assistant, Department of Mathematics, University of Oklahoma, Norman, OK.

2006-2007,  Lecturer (Part-Time), Central Department of Mathematics, Tribhuvan University, Kathmandu,  Nepal.

2001-2003,  Chair, Department of Mathematics, Sainik Awasiya Mahavidhyalaya, Sallaghari, Bhaktapur, Nepal.

1998-2003,  Post Graduate Teacher, Sainik Awasiya Mahavidhyalaya, Sallaghari, Bhaktapur, Nepal.


Member,  MAA - Mathematical Association of America

Life member,  NMS - Nepal Mathematical Society